BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250802T190632EDT-6013vFlHnD@132.216.98.100 DTSTAMP:20250802T230632Z DESCRIPTION:Seminar Spectral Geometry\n Visiter le site Internet / Visite th e Web site: https://archimede.mat.ulaval.ca/agirouard/SpectralClouds/\n\nT itle: Spectral shift via lateral variation\n\nAbstract: Our study is motiv ated by earlier results about nodal count of Laplacian eigenfunctions on m anifolds and graphs that share the same flavor: the nodal count’s ”deviati on” is equal to the Morse index of a certain ”energy functional” . In the hindsight\, in all these results\, the nodal count can be understood as th e spectral shift resulting from perturbing the operator in an appropriate way. This brings us to the following general result (joint with G. Berkola iko): the spectral shift can be recovered as the stability (Morse) index o f the eigenvalue with respect to small ”lateral” variations of the perturb ation.\n DTSTART:20210222T170000Z DTEND:20210222T180000Z SUMMARY:Peter Kuchment (Texas A&M University) URL:/mathstat/channels/event/peter-kuchment-texas-am-u niversity-328392 END:VEVENT END:VCALENDAR